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A method of numerical integration is presented which is simple, versatile and accurate. 
It is particularly valuable for integrals with complicated end point singularities. 

The method we shall discuss starts with a consideration of the ~~er-~ac~~~r~~ 
sum formula: 

N-l 

c 6F@3> = 11 F(x) dx - ; [F(A) - 
FL=0 

where d = IV6 and BZ are the Bernoulli numbers. If the term with l/2 the en 
points is included with the sum we get the trapezoidal rule, which leaves an 
of order P; and if we add two such series at alternate points so as to cancel t 
error we get Simpson’s rule, with error of order a4, and so forth. We start with the 
observation that if the function F and its first p derivatives vanish at the e~~~o~~t~ 
of the integration, then the simple sum (1) differs from the integral in order M-z0 
The general theme of the method we propose is to change variables under the inte- 
gration sign to obtain rapid decrease of the error with 6 using this sirn~~es~ 
summation formula. We are here reminded that the Eul aclaurin ~~rrn~~a is 
probably an asymptotic formula and its predictions may not always be reliable 
(imagine a function with essential singularities at both end points, such as 
or a function periodic over the interval such that all the correction terms in 
cancel out); but one may nevertheless use it as a ~~a~itat~ve ~~dicat~o~ of the sort 
of convergence, as 6 goes to zero, to’be expected. 

1 Research supported in part by the Air Force Office of Scientific Research, Bfike of Aerospace 
Research, United States Air Force, under Grant AF-AFOSR-130-66. 
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20 SCHWARTZ 

To make our analysis specific we shall now consider the integral 

I= m 
s dx F(x) 

--a, (2) 

and its approximation by the sum 

c = fcm 6F(n6). 
n=--m 

(3) 

We assume that the function F goes to zero at the end points fast enough that both 
integral and sum converge, and we assume that F is an analytic function on the 
real line where we are integrating and also within the strip 1 Im(x)l < w in the 
complex plane. We now construct the integral representation 

where the closed contour is the following. 

Now we separate this into two integrals 

c = c, + c- 

and we can relate the sum to the integral 

(4) 

(5) 

with the error given by the integrals 

+m-ie frn+$s d= s dx F(x) 
+.i 

dx F(x) 
@&/6 _ 1 --m+i~ @nws - 1 * (7) --m-k 

Now using the assumed properties of F(x) we move the first integral down a distance 
w in the complex plane, and move the second one up by w (The number w has a 
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rather evanescent quality2 since one can easily les where it might a 
the contour could be moved infinitely far away. e are srmply taking as an ex 
the case where the integrand has some singularity at a istance w from the real 
axis. For a different example see the latter part of ~p~eudix A.) 

m 6= dx F(x - iw) + 
--m &2?rie/6 - 1 

where 

Since we are interested in the error as 6 goes to zero, we ave e* as a very large 
number and so we write 

d N @-A dx F(x - iw) e-2~i~P f 
--co --m 

This result does indeed show that the error decreases faster than any power of 6, 
suggests that we may have here a very powerful method for numerical integrat 
(Halving the interval doubles the number of correct figures in the answer.) 
practical goal is to get small error with a modest number N of points ~o~tr~but~~~ 
to the sum C. We would terminate the sum (3) when the neglected ~o~~r~b~t~ons 
were smaller than the desired accuracy, but whether this means a small or large 
number of terms depends on the function F and how rapidly it dies as its argu 
goes t0 infinity. 

Let us take an example: F(x) = (es + e-“j-l, ave a closest s~ng~iar~~y at 
x = &i7~/2, so w = z-12. To get an error of only d we would terminate t 
x = iln 8-l. Thus we have the total number of points used is 

and the error is given by 

Solving we get 

9 The author is grateful to a reviewer for pointing this out. 
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and finally 

(12) 

This is a rapid convergence rate: for N = 10 the error is about 10-3, and for 
N = 100, about lo-lo. (We shall later see how to make this even better.) 

By contrast consider the example 8’(x) = (1 + s?)-~. We have w = 1, but we 
must terminate at x = +S’-l to leave errors of order d in the summation. Thus 

or 

N z ; 8-1 

8 M e-2n/6 = e-?iN8 

d In &-l M-. 
TN (13) 

Here we see that the convergence is worse than l/N, and this is extremely bad. The 
technique we shall use to improve this is a change of variable in the integral which 
will make the resulting integrand decay more rapidly at &co. We shall use the 
exponential function for these changes, not because it is unique as a function, but 
because it is readily evaluated by computing machines. Thus with 

‘we get 
x = eY - e-y (14) 

where 

I = lrn dx F(x) = Iw dy G(y) 
-cc --m 

G(y) = (e” + e-l) F (eY - e-g). 

Then if F decays as a power 

F(x) z x-“, 

G decays exponentially 
G(y) z e-(“-?Y 

and we would expect a faster convergence of the error as a function of the number 
of points N. Of course we must also ask how this change of variables has moved 
the singularities around before we can be sure that we have really gamed something. 
For this last example where the poles were at x = -&, these are transformed to a 
string of poles on the imaginary axis, the closest at a distance w = 7r/6; therefore 



we expect a good formula, something like (12). If we use is transformation on t- 
first problem we reach the conclusion that the rate of or decrease is im 
from something like exp(-N112) to something like exp(-N/b-r N). As one repeats 
this game there are the two competing effects of the faster decrease of the f~~~t~~~~ 
which means we need fewer points, and the moving of the s~ng~arit~es closer to 
the real axis, which degrades the error formula. Just where the op 
complicated to say in general, but it is easy enough to find out by e 
a computer with any given problem. 

We have up to now assumed the range (- co, + co) for the given integral. If we 
e given something else, we will start off with an exponential tra~sforrnat~~~~ 

O<x<<; x = ey --oc,<y<cO (17) 
If 

Furthermore suppose that the function F has singularities at the end points of the 
integral (see also Appendix B); this will usually not cause any di~c~~ty since after 
our variable changes we put an essential singularity at each end point, and the 
original singularity is usually smothered. If the function 6; has sing~~arit~~s within 
the original range of integration, we would just break it up into several separate 
integrals with singularities only at the end points and proceed as above. 

We will now show several examples. The manner of studying error vs. N is 
slightly different from that described above. The desired accuracy in the sum C 
is specified first, and then the summation is repeated several times with. ~irni~~s~~~g 
spacing 6. 

1. St dx We first made the transformation (18) and then repeate 
formation (14) M times. The sum was stopped when contributions we 

than 10m20. Figure 1 shows a logarithmic plot of the absolute magnitude of the error 
as a function of N, the number of points used, for M = 0, 1, 2, 3. M = 1 appears 
to be best. Also shown on the same figure is the integral $ dx In I/x treated the 
same way, and the results are also very good. The ~a~~~latio~ was repeated usin 
scaling factor in the transformation (14) i.e. 

x = C(eY - e-g), w?l 
and C’ = 1 appeared to be about optimum. (We have not tried to analyse this.) 

#2. Jr dx e-” Here we start with (17) and then proceed as wit 
in Figure 2 show again excellent results, with larger N best, but 
good. 
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3. i d.x/((x - .5)% + a”) Treated as #l for two values of a, shown in Fi 
As a gets smaller the results get poorer. 

FIG. 3. Error vs. N by the present method for example #3 at a = 0.1 and a = ?.O. 

DIsCussroN 

It is commonly said that the most efficient method for numerical. ~~tegr~t~~~ is 
some form of Gaussian quadrature. We wish to make the general claim that the 
method described in this paper is competitive, and perhaps even superior because 
in addition to yielding rapid convergence it is simple to use an 
For any given integral one can construct a sequence of Gaussian points and weights 
which will be the best, but it may be a nuisance to get these from tables; and if the 
integrand does not have the analytic properties assumed for the Gaussian formula 
then much of the power of that method is lost. The present method on the other 
hand is quite insensitive to end point behavior and is very simple to program. 
(This method was found while trying to do a set of integrals involving products of 
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several Bessel functions such that the power series expansion about one end point 
had various powers of logs and thus no Gaussian formulas were available.) 

In all these methods what really controls the rate of convergence is the nearness 
of singularities in the complex plane. The real artistry of numerical integration lies 
in learning to make changes of the variable such that these singularities are mapped 
farther away, and this must be studied separately for every problem. For example 
suppose we had the integral j?‘m &f(x) where the function f was singular at 
x = #a, then for small a we would get slow convergence of our method as well 
as of the other classical methods. We can map this singularity off to infinity; for 
example by 

Z=l/-&T; x = ,/I” z2 

which gives us the new representation for the integral 

(20) 

We have introduced new singularities at the end points, but these can be well 
handled either by our method or by the appropriate Gaussian method. Of course 
if the function f has other singularities we may bring them in closer by this trans- 
formation and possibly lose more than we gain. But then we must study the function 
closer and be more clever with the transformations we need to apply. 

One outstanding problem is the following. Consider the integral equation 

f(x) = f 4 W, YMY) + g(x). (22) 

We wish to replace the integral by some discrete sum and then solve a finite 
algebraic (matrix) problem for the function f at a discrete set of mesh points. 
Now often the kernel K(x, y) will have singularities at points y which depend on 
the value of X. Thus when we do our best to get an accurate integration formula 
-by making clever mappings in the variable y to move singularities far away- 
these will be different mappings for different x; and so we will not get a closed 
system of algebraic equations for the function f at fixed mesh points. A test case is 
the Schriidinger equation with a Yukawa potential, in momentum space: 

The author has not been able to do better than about one percent accuracy in the 
eigenvalue h with a ten point mesh for the integral by any method. In contrast a 
variational calculation of this problem with ten trial functions can give h accurate 
to about ten decimal places. 



ANALYTIC FUNCTIONS 27 

SUMMARY 

We recommend the following method for ~~rn~rica~ ~~tegr~tio~ of a given 
analytic function. 

1) Use the transformation (17) or (18) to make the range of~ntegratio~ (- co, co) 
if it is not so to start with. 

2) Then make the further transformation (14) once. 
3) Now evaluate the sum (3), truncating when contributions fall below the desired 

accuracy, and reduce the value of the spacing 6 until the answer has the 
accuracy. 

APPENDIX A 

Another realization of the error formula (7) is obtained by expan 
denominators in geometric series, 

involving the Fourier transforms 

&,) = j‘“, dx F(x) eipx. 

So the rapid decrease of the error as 6 + 0 is given in terms of the rapid decrease 
of P( p) as p + co. The dominant term would usually be 1’ = 1: 

Thus if F(x) is analytic in the strip / Im x 1 < w, we get as before 

f$ = o(e-(2~/6)w)e 

For another example: 

we find 
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APPENDIX B 

The contour integral representation can be used to analyse the error in the 
finite sum (1) 

We start with the integral over the narrow contour: 

and then open it up to: 

Cl 

after writing 

c- 3 
x=0 x=A=NG 

c4 i 

c3 

c2 

1 -= 
e” - 1 

-l--.-L- 
e-a - 1 

for the parts in the upper half plane. Now we have 

y 6F(n6) = j” F(x) dx + R, + Rz + R3 + R, . 
T&=0 0 

If the contour C, is a distance w from the real axis, we have 

Rz - o(e-21iwls) 

and similarly for R4 . The interesting terms are 

R, = -i s 
w d[[F(A + if) - F((0 - if)] 

e21iC/6 - 1 . 
0 

W) 

(B3) 

(B4) 

(W 

036) 

(B7) 

w 
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As 6 3 0 the region of importance in these integrals is 5 2 6. If we can expan 
F(x) in a Taylor series about x = 0 and about x = A, then we recover the Euler 

Jlaurin series (1). However if F is not analytic at either endpoint 
let us estimate the error. For example, suppose that as x -+ 

x”(ln X)” 

even for non-integral powers p and q. y scaling the integral ( 
the error behaves as 

d - Wl(ln 8)q. 


